Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(3): e0176322, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36995092

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy and one of the most common childhood cancers. Immunosuppressed patients, including HIV-infected patients, are more prone to KSHV-associated disease. KSHV encodes a viral protein kinase (vPK) that is expressed from ORF36. KSHV vPK contributes to the optimal production of infectious viral progeny and upregulation of protein synthesis. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used a bottom-up proteomics approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Subsequently, we validated this interaction using a co-immunoprecipitation assay. We report that both the ubiquitin-like and the catalytic domains of USP9X are important for association with vPK. To uncover the biological relevance of the USP9X/vPK interaction, we investigated whether the knockdown of USP9X would modulate viral reactivation. Our data suggest that depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Understanding how USP9X influences the reactivation of KSHV will provide insights into how cellular deubiquitinases regulate viral kinase activity and how viruses co-opt cellular deubiquitinases to propagate infection. Hence, characterizing the roles of USP9X and vPK during KSHV infection constitutes a first step toward identifying a potentially critical interaction that could be targeted by future therapeutics. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy. KSHV encodes a viral protein kinase (vPK) that aids viral replication. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used an affinity purification approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Overall, our data suggest a proviral role for USP9X.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Ubiquitina Tiolesterasa , Niño , Humanos , Enzimas Desubicuitinizantes , Herpesvirus Humano 8/fisiología , Infecciones por VIH/complicaciones , Linfoma de Efusión Primaria , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patología , Sarcoma de Kaposi/virología , Ubiquitina Tiolesterasa/genética , Proteínas Virales/genética
2.
Adv Virus Res ; 109: 201-254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33934828

RESUMEN

The DNA viruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), are members of the gammaherpesvirus subfamily, a group of viruses whose infection is associated with multiple malignancies, including cancer. The primary host for these viruses is humans and, like all herpesviruses, infection with these pathogens is lifelong. Due to the persistence of gammaherpesvirus infection and the potential for cancer formation in infected individuals, there is a driving need to understand not only the biology of these viruses and how they remain undetected in host cells but also the mechanism(s) by which tumorigenesis occurs. One of the methods that has provided much insight into these processes is proteomics. Proteomics is the study of all the proteins that are encoded by a genome and allows for (i) identification of existing and novel proteins derived from a given genome, (ii) interrogation of protein-protein interactions within a system, and (iii) discovery of druggable targets for the treatment of malignancies. In this chapter, we explore how proteomics has contributed to our current understanding of gammaherpesvirus biology and their oncogenic processes, as well as the clinical applications of proteomics for the detection and treatment of gammaherpesvirus-associated cancers.


Asunto(s)
Carcinogénesis , Gammaherpesvirinae/patogenicidad , Interacciones Microbiota-Huesped , Proteómica/métodos , Libros , Virus ADN/patogenicidad , Gammaherpesvirinae/genética , Infecciones por Herpesviridae/complicaciones , Infecciones por Herpesviridae/tratamiento farmacológico , Humanos , Infecciones Tumorales por Virus/complicaciones , Infecciones Tumorales por Virus/tratamiento farmacológico , Replicación Viral
3.
Cell Rep ; 33(5): 108352, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33113345

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is constantly evolving. Prior studies focused on high-case-density locations, such as the northern and western metropolitan areas of the United States. This study demonstrates continued SARS-CoV-2 evolution in a suburban southern region of the United States by high-density amplicon sequencing of symptomatic cases. 57% of strains carry the spike D614G variant, which is associated with higher genome copy numbers, and its prevalence expands with time. Four strains carry a deletion in a predicted stem loop of the 3' UTR. The data are consistent with community spread within local populations and the larger continental United States. The data instill confidence in current testing sensitivity and validate "testing by sequencing" as an option to uncover cases, particularly nonstandard coronavirus disease 2019 (COVID-19) clinical presentations. This study contributes to the understanding of COVID-19 through an extensive set of genomes from a non-urban setting and informs vaccine design by defining D614G as a dominant and emergent SARS-CoV-2 isolate in the United States.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pandemias , Filogenia , SARS-CoV-2 , Estados Unidos
4.
Blood ; 122(19): 3308-16, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24009233

RESUMEN

Membrane antigens are critical to the pathogenesis of chronic lymphocytic leukemia (CLL) as they facilitate microenvironment homing, proliferation, and survival. Targeting the CLL membrane and associated signaling patterns is a current focus of therapeutic development. Many tumor membrane targets are simultaneously targeted by humoral immunity, thus forming recognizable immunoglobulin responses. We sought to use this immune response to identify novel membrane-associated targets for CLL. Using a novel strategy, we interrogated CLL membrane-specific autologous immunoglobulin G reactivity. Our analysis unveiled lymphocyte cytosolic protein 1 (LCP1), a lymphocyte-specific target that is highly expressed in CLL. LCP1 plays a critical role in B-cell biology by crosslinking F-actin filaments, thereby solidifying cytoskeletal structures and providing a scaffold for critical signaling pathways. Small interfering RNA knockdown of LCP1 blocked migration toward CXCL12 in transwell assays and to bone marrow in an in vivo xenotransplant model, confirming a role for LCP1 in leukemia migration. Furthermore, we demonstrate that the Bruton's tyrosine kinase inhibitor ibrutinib or the PI3K inhibitor idelalisib block B-cell receptor induced activation of LCP1. Our data demonstrate a novel strategy to identify cancer membrane target antigens using humoral anti-tumor immunity. In addition, we identify LCP1 as a membrane-associated target in CLL with confirmed pathogenic significance. This clinical trial was registered at clinicaltrials.gov; study ID number: OSU-0025 OSU-0156.


Asunto(s)
Linfocitos B/metabolismo , Membrana Celular/metabolismo , Quimiocina CXCL12/genética , Exosomas/metabolismo , Regulación Leucémica de la Expresión Génica , Leucemia Linfocítica Crónica de Células B/genética , Proteínas de Microfilamentos/genética , Animales , Linfocitos B/patología , Biotinilación , Trasplante de Médula Ósea , Línea Celular Tumoral , Membrana Celular/patología , Movimiento Celular , Quimiocina CXCL12/metabolismo , Exosomas/patología , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Ratones , Ratones SCID , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/deficiencia , Unión Proteica , Proteoma/genética , Proteoma/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Antígenos de Linfocitos B , Transducción de Señal , Trasplante Heterólogo
5.
Blood ; 122(15): 2539-49, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23886836

RESUMEN

Given its critical role in T-cell signaling, interleukin-2-inducible kinase (ITK) is an appealing therapeutic target that can contribute to the pathogenesis of certain infectious, autoimmune, and neoplastic diseases. Ablation of ITK subverts Th2 immunity, thereby potentiating Th1-based immune responses. While small-molecule ITK inhibitors have been identified, none have demonstrated clinical utility. Ibrutinib is a confirmed irreversible inhibitor of Bruton tyrosine kinase (BTK) with outstanding clinical activity and tolerability in B-cell malignancies. Significant homology between BTK and ITK alongside in silico docking studies support ibrutinib as an immunomodulatory inhibitor of both ITK and BTK. Our comprehensive molecular and phenotypic analysis confirms ITK as an irreversible T-cell target of ibrutinib. Using ibrutinib clinical trial samples along with well-characterized neoplastic (chronic lymphocytic leukemia), parasitic infection (Leishmania major), and infectious disease (Listeria monocytogenes) models, we establish ibrutinib as a clinically relevant and physiologically potent ITK inhibitor with broad therapeutic utility. This trial was registered at www.clinicaltrials.gov as #NCT01105247 and #NCT01217749.


Asunto(s)
Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Células TH1/efectos de los fármacos , Adenina/análogos & derivados , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/enzimología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Células Jurkat , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/inmunología , Leucemia/tratamiento farmacológico , Leucemia/inmunología , Listeriosis/tratamiento farmacológico , Listeriosis/inmunología , Activación de Linfocitos/efectos de los fármacos , Ratones , Piperidinas , Cultivo Primario de Células , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Células TH1/citología , Células TH1/enzimología , Células Th2/citología , Células Th2/efectos de los fármacos , Células Th2/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...